WEKO3
アイテム
Preceding postural control in forelimb reaching movements in the cat
https://asahikawa-med.repo.nii.ac.jp/records/2000295
https://asahikawa-med.repo.nii.ac.jp/records/2000295f907dea7-25ec-489a-9efb-856418b17423
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学位論文 / Thesis or Dissertation_02(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2022-07-25 | |||||||||||
タイトル | ||||||||||||
タイトル | Preceding postural control in forelimb reaching movements in the cat | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | anticipatory postural adjustments | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | forelimb reaching | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | higher order brain function | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | optimization | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
主題 | postural control | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_db06 | |||||||||||
資源タイプ | doctoral thesis | |||||||||||
アクセス権 | ||||||||||||
アクセス権 | open access | |||||||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||||||
その他(別言語等)のタイトル | ||||||||||||
その他のタイトル | ネコ前肢リーチング運動における先行性姿勢制御 | |||||||||||
言語 | ja | |||||||||||
著者 |
髙橋, 未来
× 髙橋, 未来
|
|||||||||||
bibliographic_information |
en : Frontiers in systems neuroscience 巻 15, p. 792665, 発行日 2022-01-01 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | EISSN | |||||||||||
収録物識別子 | 1662-5137 | |||||||||||
DOI | ||||||||||||
関連タイプ | isIdenticalTo | |||||||||||
識別子タイプ | DOI | |||||||||||
関連識別子 | https://doi.org/10.3389/fnsys.2021.792665 | |||||||||||
識別番号 その他 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | PMID:35115911 | |||||||||||
言語 | en | |||||||||||
dissertation_number | ||||||||||||
学位授与番号 | 甲第572号 | |||||||||||
学位授与年月日 | ||||||||||||
学位授与年月日 | 2022-03-25 | |||||||||||
学位名 | ||||||||||||
言語 | ja | |||||||||||
学位名 | 博士(医学) | |||||||||||
item_10_degree_grantor_32 | ||||||||||||
言語 | ja | |||||||||||
学位授与機関名 | 旭川医科大学 | |||||||||||
item_10_description_33 | ||||||||||||
内容記述タイプ | Abstract | |||||||||||
内容記述 | Postural control precedes the goal-directed movement to maintain body equilibrium during the action. Because the environment continuously changes due to one's activity, postural control requires a higher-order brain function that predicts the interaction between the body and the environment. Here, we tried to elucidate to what extent such a preceding postural control (PPC) predictively offered a posture that ensured the entire process of the goal-directed movement before starting the action. For this purpose, we employed three cats, which we trained to maintain a four-leg standing posture on force transducers to reach the target by either forelimb. Each cat performed the task under nine target locations in front with different directions and distances. As an index of posture, we employed the center of pressure (CVP) and examined CVP positions when the cat started postural alteration, began to lift its paw, and reached the target. After gazing at the target, each cat started PPC where postural alteration was accompanied by a 20-35 mm CVP shift to the opposite side of the forelimb to be lifted. Then, the cat lifted its paw at the predicted CVP position and reached the forelimb to the target with a CVP shift of only several mm. Moreover, each cat had an optimal target location where the relationship between the cat and target minimized the difference in the CVP positions between the predicted and the final. In this condition, more than 80% of the predicted CVP positions matched the final CVP positions, and the time requiring the reaching movement was the shortest. By contrast, the forelimb reaching movement required a greater CVP shift and longer time when the target was far from the cat. In addition, the time during forelimb reaching showed a negative correlation with the speed of the CVP shift during the PPC. These results suggest that the visuospatial information, such as the body-environment interaction, contributes to the motor programming of the PPC. We conclude that the PPC ensures postural stability throughout the action to optimize the subsequent goal-directed movements. Impairments in these processes may disturb postural stability during movements, resulting in falling. | |||||||||||
言語 | en | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |