ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. Public
  2. 国外雑誌論文

The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer

https://asahikawa-med.repo.nii.ac.jp/records/2000520
https://asahikawa-med.repo.nii.ac.jp/records/2000520
ace9ffc6-aa6c-4a97-a6cd-e4d93a7f6170
名前 / ファイル ライセンス アクション
32955663.pdf 32955663.pdf (5.6 MB)
Item type 学術雑誌論文 / Journal Article_02(1)
公開日 2025-05-29
タイトル
タイトル The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer
言語 en
言語
言語 eng
キーワード
主題Scheme BSH
キーワード Bone metastases
キーワード
主題Scheme Other
キーワード Bone scintigraphy
キーワード
主題Scheme Other
キーワード Deep learning
キーワード
主題Scheme Other
キーワード Prostate cancer
資源タイプ
資源タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Yuki, Aoki

× Yuki, Aoki

en Yuki, Aoki

Search repository
Michihiro, Nakayama

× Michihiro, Nakayama

en Michihiro, Nakayama

Search repository
Kenta, Nomura

× Kenta, Nomura

en Kenta, Nomura

Search repository
Yui, Tomita

× Yui, Tomita

en Yui, Tomita

Search repository
Kaori, Nakajima

× Kaori, Nakajima

en Kaori, Nakajima

Search repository
Masaaki, Yamashina

× Masaaki, Yamashina

en Masaaki, Yamashina

Search repository
Atsutaka, Okizaki

× Atsutaka, Okizaki

en Atsutaka, Okizaki

Search repository
bibliographic_information en : Annals of nuclear medicine

巻 34, 号 12, p. 926-931, 発行日 2020-12-01
ISSN
収録物識別子タイプ PISSN
収録物識別子 0914-7187
ISSN
収録物識別子タイプ EISSN
収録物識別子 1864-6433
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s12149-020-01524-0
リンクURL
内容記述タイプ Other
内容記述 https://link.springer.com/article/10.1007/s12149-020-01524-0
言語 en
item_1716186501932
関連タイプ isVersionOf
識別子タイプ PMID
関連識別子 32955663
item_5_description_33
内容記述タイプ Abstract
内容記述 Objective: Bone scintigraphy has often been used to evaluate bone metastases. Its functionality is evident in detecting bone metastasis in patients with malignant tumor including prostate cancer, as appropriate treatment and prognosis are dependent on the presence and degree of bone metastasis. The development of a deep learning-based algorithm in the field of information processing has been remarkable in recent years. We hypothesized that a deep learning-based algorithm is useful in diagnosing osseous metastases in patients with prostate cancer using bone scintigraphy. Thus, this study aims to examine the utility of deep learning-based algorithm in detecting bone metastases in patients with prostate cancer, as compared with nuclear medicine specialists.

Methods: In total, 139 serial patients with prostate cancer, who underwent whole-body bone scintigraphy, were enrolled in this study. Each scintigraphy examination was evaluated visually and independently by nuclear medicine specialists; this was also analyzed using a deep learning-based algorithm. The number of abnormal uptakes was assessed by the nuclear medicine specialists and with a software which used the deep learning-based algorithm, and the per-patient detection rate and the per-region detection rate were then calculated. The software automatically analyzed bone scintigraphy for the presence or absence of osseous metastasis in individual patients, for the 12 body regions. The detection rates analyzed separately by the nuclear medicine specialists and using the software were then compared. The sensitivity, specificity, and accuracy by the specialist and with the software were calculated.

Results: The sensitivity, specificity, and accuracy by the nuclear medicine specialists were 100%, 94.9% and 97.1%. On the other hand, they with the software were 91.7%, 87.3% and 89.2%. No statistically significant difference was determined between the per-patient detection rates assessed by the specialists versus the software. In regional assessment, there was also no statistically significant difference between most of the per-region detection rates (10 of 12 regions) by the specialists versus the results obtained by the software.

Conclusions: The software with the deep learning-based algorithm might be used as diagnostic aid in the evaluation of bone metastases for prostate cancer patients.
言語 en
出版タイプ
出版タイプ AM
item_5_textarea_42
en
© The Japanese Society of Nuclear Medicine 2020
戻る
0
views
See details
Views

Versions

Ver.1 2025-05-29 01:10:03.055060
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3