

Human Reproduction (2004. Mar) 19(3):639-644.

Integrins are not involved in the process of human sperm-oolemmal fusion

Sengoku, Kazuo ; Takuma, Naoyuki ; Miyamoto, Toshinobu ; Horikawa, Michiharu ; Ishikawa, Mutsuo 1 Integrins are not involved in the process of human sperm-oolemmal fusion

2

- 3 Running title: Integrin and sperm-oolemmal interaction
- 4
- 5 Kazuo Sengoku
- 6 Naoyuki Takuma
- 7 Toshinobu Miyamoto
- 8 Michiharu Horikawa
- 9 Mutsuo Ishikawa
- 10
- 11 Department of Obstetrics and Gynecology,
- 12 Asahikawa Medical College, Asahikawa, 0788510, Japan
- 13
- 14 Correspondence: Kazuo Sengoku M.D.
- 15 Department of Obstetrics and Gynecology,
- 16 Asahikawa Medical College,
- 17 Midorigaoka-higashi 2-1, Asahikawa, 0788510, Japan
- 18 Tel: 81-166-68-2562
- 19 Fax: 81-166-68-2569
- 20 E-mail: ksen@asahikawa-med.ac.jp
- 21
- 22

1 Abstract

2 BACKGROUND: We investigated whether integrins are required for the human 3 sperm-oocyte binding and fusion process. METHODS: The expression of several 4 integrin subunits at the human oocyte plasma membrane was investigated using 5 immunofluorescence microscopy, and the functional role of integrins expressed at the 6 human oocyte surface in sperm-oocyte interaction was studied using a zona-free human 7 oocyte binding and fusion assay. A total of 144 unfertilized oocytes were stained with 8 anti-integrin antibodies and 147 zona-free unfertilized oocytes were inseminated in the 9 presence of various anti-integrin antibodies that were expressed in oocyte plasma 10 membrane. RESULTS: The antibodies of six alpha integrin subunits ($\alpha 2$, $\alpha 3$, $\alpha 5$, $\alpha 6$, αV , 11 α M) and six beta integrin subunits (β 1, β 2, β 3, β 4, β 5, β 6) were bound to the surface of 12 fixed unfertilized oocytes. In contrast, the presence of $\alpha 1$ and $\alpha 4$ subunits could not be 13 verified. The human sperm-oocyte binding was only partially inhibited by blocking 14 antibodies of $\alpha 2$, $\alpha 3$, $\alpha 5$, $\alpha 6$, αV , αM , $\beta 1$, $\beta 2$ and $\beta 3$ with a maximum of 55% inhibition, 15 but antibodies of β 4, β 5 and β 6 showed no effect on sperm-oolemmal binding. Similar 16 reduction of the number of fused spermatozoa was observed. However, the ratio of 17 fused spermatozoa to total spermatozoa (bound and fusion) was not impaired by all 18 integrins antibodies suggesting that integrins had no role in the sperm-oolemmal fusion 19 process.

20 CONCLUSIONS: These results suggest that one of the binding mechanisms can be 21 inhibited by integrin antibodies but this mechanism does not play an essential role in the 22 human sperm-oolemmal binding and fusion processes. The other mechanisms,

1	insensitive to integrins, may involve binding and fusion process in human oocyte
2	
3	
4	
5	
6	Key words: human gamete fusion / integrin/ oocyte plasma membrane / sperm
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 Introduction

2

3 The molecular events of sperm-egg binding and fusion have extensively been studied, 4 but identification of the molecules involved in sperm-egg interaction remains incomplete. 5 Several candidate molecules for sperm-egg binding and fusion have been proposed. The 6 best candidate of ligands on sperm is ADAM (A Disintegrin and Metalloprotease) protein. 7 In the mouse, antibodies and peptide of the disintegin domain of fertilin β and cyritestin 8 have been reported to strongly inhibit sperm-egg binding and fusion (Primakoff et al., 9 1987; Yuan et al., 1997; Evans et al., 1998; Bigler et al. 2000; Zhu et al., 2000; 10 McLaughlin et. al., 2001). The evidence that disintegrin-like domains of fertilin β and 11 cyritestin might be responsible for sperm-egg interactions suggests that complementary 12 binding molecules on the oocyte plasma membrane are integrins (Blobel et al., 1992; 13 Myles et al., 1994; Bronson et al., 1999). Indeed, a number of integrin subunits have 14 been detected in the oolemma of mammalian oocytes. It seems likely that one or more 15 integrins are involved in the processes of sperm-egg binding and fusion. Since peptides 16 with a sequence of fertilin β disintegrin domains bound to $\alpha 6\beta 1$ integrin and an anti- $\alpha 6$ 17 integrin function-blocking monoclonal antibody, GoH3, inhibits mouse sperm-oocyte 18 binding and fusion, mouse egg integrin $\alpha 6\beta 1$ could be a primary candidate for a sperm 19 receptor (Almeida et al., 1995). This concept is further supported by the findings that 20 integrin $\alpha 6\beta 1$ has been reported to be associated with CD9 in various cells including 21 mouse oocyte plasma membrane, because recent studies demonstrate that egg CD9 play a 22 key role in sperm-oocyte fusion (Nakamura et al., 1995; Miyado et al., 2000; Kaji et al.,

1 2000; Le Naour et al., 2000). However, oocytes from mice null $\alpha 6$ integrin subunit 2 were shown to have no reduction in sperm-oocyte binding and fusion, suggesting that $\alpha 6$ 3 integrin is not critical for oocyte-sperm interactions (Miller et al., 2000). The 4 involvement of other subfamilies of integrins, particulally $\alpha 4$ and $\alpha 9$ integrins, in the 5 processes of sperm-oocyte binding and fusion has also been suggested (Zhu and Evans et 6 al., 2002). This may reflect redundancy of $\alpha 6\beta 1$ and other egg integrins, or it may mean 7 that integrins have no role in binding and fusion.

In humans, several integrin subunits have been identified in the oolemma, but controversy still exists (de Nadai et al., 1995; Ji et al., 1998; Fusi et al., 1993; Campbell et al., 1995; Capmany et al., 1998)). The involvement of the RGD-binding subfamily of integrins in the gamete interactions has also been demonstrated by the inhibition of interactions of human sperm with zona-free hamster and human oocytes by RGD peptides (Bronson and Fusi, 1990; Ji et al., 1998). However, limited information is available concerning the role of integrins in human sperm-oocyte interaction.

The aim of the present study was to investigate whether integrins are required for human sperm-oocyte binding and fusion process. The expression of several integrin subunits at the human oocyte plasma membrane was investigated using immunofluorescence microscopy, and the functional role of integrins expressed at the human oocyte surface in sperm-oocyte interaction was studied using a zona-free human oocyte binding and fusion assay.

21

22 Materials and Methods

1

2 Unfertilized oocytes in this study were obtained from patients undergoing IVF. 3 Written informed consent was obtained from all patients and this study was approved by 4 the local ethical committee. Follicular stimulation and IVF protocols were described 5 previously (Sengoku et al., 1995). Briefly, follicular stimulation was achieved with a 6 desensitizing protocol using a combination of GnRH agonist (buserelin acetate; Spurecur, 7 Hoechst, Tokyo, Japan) and hMG (Pergonal; Teikokuzouki, Tokyo, Japan). Human 8 chorionic gonadotropin 10000 IU (hCG mochida; Moshida Pharmaceutical, Tokyo, 9 Japan) was administered when leading follicles were > 16 mm in diameter. Oocyte 10 recovery was performed 34-36 hr after the hCG injection using transvaginal 11 ultrasound-guided aspiration. The oocytes were examined for fertilization 16-18 after 12 insemination. Oocytes with no signs of fertilization and apparently normal morphology 13 were included in this study.

14

15 Immunohistochemistry

16

One-day old unfertilized oocytes were transferred to PBS. The zona pellucida was removed by a brief exposure to acid Tyrode's solution. After 3 h of incubation (recovery time) in human tubal fluid (HTF; Irvine Scientific, Santa Ana, CA) supplemented with 10% synthetic serum substitute (SSS; Irvine Scientific), zona-free unfertilized oocytes were fixed in 2% paraformaldehyde in PBS for 30 min. After washing in PBS with 0.3% bovine serum albumin (BSA; Sigma Chemical Co., St. Louis, MO) and 100 mM glycine

1 (blocking solution), the unfertilized oocytes were incubated for 1 h with various 2 anti-human integrin antibodies diluted in PBS containing 3% fetal calf serum (to mask 3 non-specific binding sites). Mouse monoclonal antibodies against human integrin subunits a1(FB12), a2 (P1E6), a3 (P1B5), a4 (P4G9), a5 (P1D6), aV (CLB706), 4 5 α M(ICRF44), β 2(P4H9), β 3(PM6/13), β 4(ASC3), β 6(CSb6), and rabbit polyclonal 6 antibodies against $\beta 5$ were supplied by Chemicon International (CA, USA). 7 Anti-human integrin subunit $\alpha 6$ (GoH3) monoclonal antibody was raised in the rat (Gibco BRL, Life Technologies, Gaithersburg, MD, USA) and mouse monoclonal anti-human 8 9 integrin subunit β 1(6S6) was purchased from UBI (Upstate Biotechnology Inc., Lake 10 Placid, NY,USA). They are all used at a 1:20 (v/v) dilution in PBS. The specimens 11 were washed by several transfers to blocking solution and incubated with one of the 12 following fluorescent conjugates for 45 min. The conjugated secondary antibodies (raised 13 in mouse, goats or rabbit) were used at a dilution of 1:200 in PBS-BSA. 14 When staining was not detected, the detection was amplified by a biotinylated

anti-mouse, anti-rat or anti-rabbit IgG and streptavidin-fluorescein isothiocynate (FITC).
The unfertilized oocytes labeled by integrin antibodies were incubated for 45 min in a
solution containing biotinylated goat anti-mouse, anti-rat or anti-rabbit IgG at a dilution
of 1:200 in PBS-BSA (Sigma Chemical Co) and then reincubated for 30 min in PBS with
Streptavidin -FITC (at a dilution of 1:150, Sigma Chemical Co.; Ji et al, 1998).

Negative controls were obtained by substituting the incubation in primary antibody for
an incubation in PBS containing 3% fetal calf serum. Moreover, negative controls were
established during each staining procedure to confirm that the fluorescence observed was

not attributable to nonspecific binding of the secondary antibody. 1

2	Labelled specimens were mounted on slides in PBS supplemented with 25 mg/ml 1,4				
3	diazabicyclo-(2.2.2) octane (DABCO; Sigma) and photographed on an Olympus BX60				
4	fluorescent microscope (Olympus Optical Co., Tokyo, Japan). Overlays of captured				
5	images were processed with Adobe Photoshop 7.0.				
6	The possibility of penetration of spermatozoa into unfertilized oocytes, and the possible				
7	activation of oocytes were confirmed by Hoechst 33342 (10 μ g/ml) staining. Only				
8	metaphase II stage oocytes were included in this study.				
9					
10	Assessment of sperm-oocyte interaction				

11

12 The dye transfer technique (Hinkley et al., 1986) was used to assess the sperm-oocyte 13 interaction. Zona pellucida-free unfertilized oocytes were incubated in HTF medium containing 0.1 µg/ml Hoechst 33342 (Sigma) for 30 min, and then rinsed thoroughly in 14 15 PBS over 15 min. Oocytes were preincubated with the 25µg/ml anti-integrin antibodies 16 for 1 h, washed free from unbound antibodies and then inseminated with 100,000/ml 17 spermatoza in fresh HTF medium. The Control group contained mouse immunoglobulin 18 G (IgG; Sigma). Two hours after insemination, the oocytes were washed using a narrow 19 bore pipette to remove loosely adhering spermatozoa. Then, oocytes were fixed with 20 2.5% glutaraldehyde in PBS at pH 7.4 for 30 min, rinsed with PBS and mounted for 21 observation under an Olympus BX60 fluorescent microscope. Spermatozoa were 22 considered fused when fluorescent-positive condensed or decondensed sperm head were

1 observed on the egg surface. Spermatozoa attached to the egg surface which could be 2 seen by light microscope, without fluorescence, were designated as binding spermatozoa. 3 To confirm the validity of this dye transfer technique, we preloaded zona-free human 4 oocytes with 0.1 µg/ml Hoechst dye and then inseminated with uncapacitated 5 spermatozoa (cultured in Ca2+-free HTF medium). When oocytes were inseminated with 6 uncapacitated spermatozoa, none of the attached spermatozoa showed 7 fluorescent-positive condensed sperm nuclei. Therefore, the present experiment in 8 which 0.1 µg/ml Hoechst dve was preloaded made it possible to distinguish fused from 9 unfused spermatozoa. 10 11 **Statistical Analysis** 12 13 Statistical significance of the data was determined by Student's t-test and the chi-squared 14 test, as appropriate. Differences were considered significant at P < 0.05. 15 Results 16 17 18 A total of 144 unfertilized oocytes were stained with anti-integrin antibodies. The 19 detection was amplified by a biotinylated anti-mouse, anti-rat or anti-rabbit IgG and 20 streptavidin-fluorescein isothiocynate (FITC) in six integerin subunits (α 1, 2, 4, 5, M, 21 β 1 3, 6). Antibodies of six alpha integrin subunits (α 2, α 3, α 5, α 6, α V, α M) and six

22 beta integrin subunits (β 1, β 2, β 3, β 4, β 5, β 6) were bound to the surface of fixed

1 unfertilized oocytes. In contrast, the presence of $\alpha 1$ and $\alpha 4$ subunits could not be 2 verified. The heterogeneity of the intensity or distribution of fluorescence was found 3 among oocytes. In some oocytes, surface staining was unevenly distributed, but the 4 most typical pattern was intense and uniformly distributed at the oocyte surface. 5 Furthermore, some integrin subunits were inconsistently expressed in unfertilized 6 oocytes. Negative controls substituting the incubation in primary antibody for an 7 incubation in PBS containing 3% fetal calf serum showed no immunofluorescence 8 labellings. The representative patterns of staining are shown in figure 1, and a summary 9 of these patterns is shown in table I and II.

10 These immunocytochemical findings indicated a potential role for α and β integrin 11 subunits in the gamete binding and fusion process. We investigated whether integrins 12 could be involved in binding and/or fusion of human gametes during fertilization. One 13 hundred forty seven zona-free unfertilized oocytes were inseminated in the presence of 14 various anti-integrin antibodies that were expressed in oocyte plasma membrane, and 135 15 zona-free oocytes were served as the control. Any antibodies used in this study, except 16 β 4, β 5 and β 6, partially inhibited binding process by ~55% as compared with controls. 17 Similar reduction of the number of fused spermatozoa was observed by anti-integrin 18 subunits. No apparent effect on binding and fusion was observed in the presence of $\beta 4$, 19 β 5 and β 6 integrin subunits. However, the ratio of fused spermatozoa to total 20 spermatozoa (bound and fusion) was not impaired by all integrin antibodies indicating no 21 effect of integrins on the sperm-oolemmal fusion (Table III and IV). А 22 dose-dependency inhibition was not done due to limited number of samples and higher

concentrations of antibodies caused damage to the gametes. This inhibition was specific
 since mouse IgG control antibody had no effect on binding and fusion.

3

4 Discussion

5

6 To investigate the expected role for integrins in human sperm-oocyte binding and 7 fusion, we studied the expression of integrins on the human oocyte surface and whether 8 antibodies against integrin subunits inhibit human sperm-oocyte membrane binding and 9 fusion.

10 In this study, $\alpha 2$, $\alpha 3$, $\alpha 5$, $\alpha 6$, αV , αM , $\beta 1$, $\beta 2$, $\beta 3$, $\beta 4$, $\beta 5$ and $\beta 6$ subunits were 11 detected in human oocyte plasma membrane, however, exposed surface localization of 12 the $\alpha 1$ and $\alpha 4$ subunits could not be verified. These results extend previous 13 observations of integrin expression on the human oocyte surface, although some controversy still exists. Integrin subunits $\alpha 2$, $\alpha 3$, $\alpha 4$, αV , αL , $\beta 1$, $\beta 2$, $\beta 3$, $\beta 4$, $\beta 5$ and 14 15 β 7 have been demonstrated in human oocytes by Campbell et al. (1995). Using a 16 rosetting technique, Fusi et al. (1992, 1993) demonstrated that $\alpha 2$, $\alpha 5$, $\alpha 6$, αV , $\beta 1$ but 17 not $\alpha 4$ were detected on human oolemma. It has also been reported that $\alpha 2, \alpha 5$ and 18 $\alpha \delta$ were detected by immunofluorescense labellings, but $\alpha 4$ and $\beta 1$ were not detected on 19 the surface of human oocytes (de Nadai et al., 1996).

20 While α 6 not identified by Campbell at al. (1995), other studies including present study 21 have described its presence in human oocytes. These staining results were consistent 22 with the report in which the expression of α 5, α 6 was detected in a serial analysis of gene 1 expression (SAGE) in the human oocyte (Neilson et al., 2000)

2

3 among studies in the ability to detect specific integrin subunits. However, the consistent 4 absence of labeling with $\alpha 1$ antibody in several studies including our current observation 5 indicates that this subunit is not present or is present in extremely small numbers on the 6 surface of human oocytes. 7 Recently, it has been suggested that $\alpha 4/\alpha 9$ is involved in mouse sperm-egg membrane 8 interaction from studies of ferilin β binding assays to mouse zona-free eggs using the 9 peptides perturbing integrin-mediated interaction (Zhu and Evans 2002). The α 9 β 1 may 10 be a major receptor for ADAMs that lack RGD motifs, since $\alpha 9\beta 1$ specifically binds to 11 the disintegrin domain of fertilin β synthesized in bacteria (Eto et al., 2000). 12 The $\alpha 4$ subunit was reported to be detected by Campbell et al. (1995), but Fusi et al. 13 (1993) and de Nadai et al. (1996) failed to found the expression of α 4 on human oocytes. 14 Although a similar amplification step to Ji et al. (1998) was employed in our study to 15 increase sensitivity of detection system, $\alpha 4$ subunit was not detected. Thus, it seems 16 unlikely that $\alpha 4$ is involved in human sperm-oocyte membrane interactions. The $\alpha 9$ 17 integrin has not yet shown to be present on human oocytes, and we did not investigate the 18 expression of α 9, because antibody against α 9 was not available in our current study. 19 These immunocytochemical findings might suggest a potential role for integrin 20 subunits in the human gamete binding and fusion process. Zona-free unfertilized human 21 oocytes were inseminated in the presence of various anti-integrin antibodies that were

The differences in labeling protocols and antibodies could explain the discrepancies

22 expressed in human oocyte plasma membrane.

1 Our observation demonstrated that human sperm-oocyte binding was only partially 2 inhibited by blocking antibodies of $\alpha 2$, $\alpha 3$, $\alpha 5$, $\alpha 6$, αV , αM , $\beta 1$, $\beta 2$ and $\beta 3$ with a 3 maximum of 55% inhibition, but antibodies of $\beta 4$, $\beta 5$ and $\beta 6$ showed no effect on 4 sperm-oolemmal binding. In addition, the fusion of oocytes by spermatozoa that had 5 become bound to oolemma was not blocked.

It should be noted that the oocytes used in this study were one-day-old unfertilized oocytes and that alterations produced by the acid Tyrodes treatment used for zona pellucida removal were possible. However, several experiments, including our previous study, show that ageing and acid Tyrodes treatment in vitro do not affect the ability of oocytes to fuse with spermatozoa (Tesarik 1989; Sengoku et al.,1995; Ji et al 1997;1998).

It is also unlikely that these findings were due to use of a suboptimal concentration of the antibodies, since Ji et al. (1998) reported that the inhibition of sperm fusion with oocytes reached a plateau at 25 μ g/ml of antibody against β 1 integrin. Although we did not investigate dose-dependency of inhibition due to a limited specimens and gamete toxicity of high concentrations of antibodies, concentrations of antibodies used in our study is almost similar to that of their experiment.

It has been demonstrated that blocking anti-human β 1 integrin monoclonal antibody, RGD (Arg-Gly-Asp)-containing peptide, or both, did not result in full inhibition of human gamete fusion (Ji et al., 1998). They suggested that β 1 integrins are involved in human gamete interaction, but human gamete fusion can bypass the β 1 requirement or a cofactor is required for the gamete fusion process. Both RGD containing peptide and 1 FEE (Phe-Glu-Glu) containing peptide, a putative integrin recognition sequence in 2 human fertilin β , as is the QDE peptide in mice, has been reported to inhibit both adhesion 3 and penetration of human spermatozoa with zona free human oocyte, but it is not 4 complete inhibition (Bronson et al., 1999). They proposed that integrins which 5 recognize fertilin β and RGD containing sperm-associated proteins, such as vitronectin 6 and fibronectin, each play a role in gamete interaction and that they may cooperate, 7 although fertilin α and cyritestin genes were determined to be non-functional 8 pseudogenes in humans (Jury et al., 1997; Grzmil et al., 2001).

9 Similar results were reported in the heterologous system (human spermatozoa-hamster 10 RGD containing peptides can inhibit the adhesion and penetration of oocytes). 11 zona-free hamster eggs by human spermatozoa suggesting that RGD-dependent integrins, 12 such as $\alpha 5\beta 1$ and, $\alpha V\beta 1$, $\alpha V\beta 3$ are involved in the process of fertilization (Bronson and 13 Fusi 1990). Furthermore, fibronectin and vitronectin have been expressed on the surface 14 of capacitated human spermatozoa (Fusi and Bronson, 1992; Fusi et al., 1992). It has 15 also been reported that antibody against $\alpha 2$ and $\alpha 5$ integrins inhibited both attachment 16 and fusion of human spermatozoa with hamster oocyte by about 50% (de Nadai et al., 17 1996)).

18 Echistatin, a disintegrin inhibits the binding of vitronectin and fibronectin to integrins 19 $\alpha V\beta 3$ and $\alpha V\beta 1$, inhibited the binding of human spermatozoa to the oolemma of 20 zona-free hamster eggs. Although oolemmal adhesion of spermatozoa was reduced 21 markedly by echistatin, it was not inhibited completely, and it had no apparent effect on 22 egg penetration by sperm that did bind (Bronson et al.,1995). The authors suggested that oolemmal integrins facilitates sperm adherence to the egg surface but is not required for
 sperm penetration.

In mice, it has been reported that several lines of mice null for integrin subunits (α 6, α 7, β 3 and β 5) are normally fertile (Miller et al., 2000; Hodivala-Dilke et al., 1999; Huang et al., 2000; Mayer et al., 1997). Recently, it has been demonstrated that α 3 null eggs and β 1 integrin null eggs function normally in sperm-egg binding and fusion suggesting that none of the integrins known to be present on mouse eggs are essential for sperm-egg binding and fusion (He et al., 2003).

9 Taken together including our findings of the partial inhibition binding and no apparent 10 effect of fusion process by several antibodies against integrins, it seems likely that 11 integrins involve in human sperm-oolemmal interaction, but are redundant with each 12 other or may play an only marginal role, and that the membrane fusion is a separate event 13 which is independent of integrin receptors.

14 CD9 has been reported to be essential for sperm-egg fusion in mouse (Kaji et al., 2000; 15 Le Naour et al., 2000; Miyado et al., 2000), although the role of CD9 in gamete 16 interaction in human has not been clearly determined.

It seems likely that an egg surface tetraspanin web involving β 1 integrin and integrin associated proteins may define or help maintain a site for sperm fusion (Takahashi et al., 2001) because $\alpha 6\beta$ 1 and CD9 reported to be coimmunoprecipitated from mouse eggs (Miyado et al., 2000). However, the combined evidence demonstrating that mouse egg lacking $\alpha 6\beta$ 1 fuse normally with sperm (Miller et al., 20000) and that the human sperm oolemmal fusion process was not impaired by antibodies against several integrin subunits in this study, would appear to indicate that a CD9 partner other than the integrins could
 function as sperm receptor to initiate the gameta fusion process.

In conclusion, the small but significant reduction of sperm-oocyte plasma membrane binding by antibodies against the several integrin subunits implies involvement of the integrins in human sperm-oocyte interaction. However, our data support the hypothesis that one of the binding mechanisms can be inhibited by integrin antibodies but this mechanism does not play an essential role in the binding and fusion process. The other mechanisms, insensitive to integrins, might involve binding and fusion process in human oocytes.

10

11 Acknowle	dgments
-------------	---------

12

13	The authors acknowledge Dr. W. Richard Dukelow (Former Endocrine Research Center,
14	Michigan State University) for a critical reading of the manuscript. This work was
15	supported by grant from the Japan Society for the Promotion of Science (Grant-in-Aid for
16	Scientific Research 15591725).

17

18 References

19

20 Almeida, E.A.C., Huovia, A.P.J., Sutherland, A.E., Stephens, L.E., Calarco, P.G., Shaw,

21 L.M., Mercurio, A.M., Sonnenberg, A., Primakoff, P., Myles, D.G., White, J.M. 1995.

22 Mouse egg integrin alpha6beta1 functions as a sperm receptor. Cell 81:1095-1104.

1	Bigler D, Takahashi Y, Chen MS, Almeida EAC, Osburne L, White JM. (2000)
2	Sequence-specific interaction between the disintegrin domain of mouse ADAM2 (fertilin
3	beta) and murine eggs: role of the alpha6 integrin subunit. J. Biol. Chem. 275,
4	11576-11584.
5	Blobel, C.P., Wolfsberg, T.G., Turck, C.W., Myles, D.G., Primakoff, P., White, J.M.
6	(1992) A potential fusion peptide and an integrin ligand domain in a protein active in
7	sperm-egg fusion. Nature, 356, 248-252.
8	Bronson, R.A., Fusi, F. (1990) Evidence that an Arg-Gly-Asp adhesion sequence plays a
9	role in mammalian fertilization. Biol. Reprod. 43,1019-1025.
10	Bronson, R.A., Fusi, F.M., Calzi, F., Doldi, N., Ferrari, A. (1999) Evidence that a
11	functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions. Mol.
12	Hum. Reprod. 5,433-440.
13	Campbell, S., Swann, H.R., Seif, M.W., Kimber, S.J., Aplin, J.D. (1995) Cell adhesion
14	molecules on the oocyte and preimplantation human embryo. Mol. Hum. Reprod.
15	10,1571-1578.
16	Capmany, G., Mart, M., Santalo, J., Bolton, V.N. (1998) Distribution of alpha3, alpha5
17	and alphaV integrin subunits in mature and immature human oocytes. Mol. Hum. Reprod.
18	10, 951-956.
19	de Nadai, C., Fenichel, P., Donzeau, M., Epel, D., Ciapa, B,. (1996) Characterization and
20	role of integrins during gametic interaction and egg activation. Zygote 4,31-40.
21	Eto, K., McLaughlin, W.P., Sheppard, D., Fujisawa, A.S., Zhang, X.P., Takada, Y. (2000)
22	RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin

1	domains	mediate	cell-cell	interaction.	J. Biol.	Chem.	275,34922-34930.
---	---------	---------	-----------	--------------	----------	-------	------------------

- 2 Evans, J.P., Schultz, R.M., Kopf, G.S. (1998) Roles of the disintegrin domains of mouse
- 3 fertilin alpaha and beta in fertilization. Biol. Reprod. 59,145-152.
- 4 Fusi, F.M., Vigali, M., Busacca, M., Bronson, R.A. (1992) Evidence for the presence of
- 5 an integrin cell adhesion receptor on the oolemma of unfertilized human oovytes. Mol.
- 6 Reprod. Dev. 31,215-222.
- 7 Fusi, F.M., Vignali, M., Gailit, J., Bronson, R.A. (1993) Mammalian oocytes exhibit
- 8 specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal
- 9 integrins. Mol. Reprod. Dev. 36,212-219.
- 10 Grzmil, P., Kim, Y., Shamsadin, R., Neesen, J., Adham, I.M., Heinlein, U.A.O.,
- 11 Schwarzer, U.J., Engel, W. (2001) Human cyritestin genes (CYRN1 and CYRN2) are
- 12 non-functional. Biochem. J. 357,551-556.
- 13 He, Z.Y., Brkebusch, C., Fassler, R., Kreidberg, J.A., Promakoff, P., Myles, D.G. (2003)
- 14 None of the integrins known to be present on the mouse egg or to be ADAM receptors are
- 15 essential for sperm-egg binding and fusion. Devel. Biol. 254,226-237.
- 16 Hinkley, R.E., Wright, B.D., Lynn, J.W. (1986) Rapid visual detection of sperm-egg
- 17 fusion using the DNA-specific fluorochrome Hoechst 33342. Dev. Biol. 118,148-154.
- 18 Hodivala-Dike, K.M., McHugh, K.P., Tsakiris, D.A., Rayburn, H., Crowley, D.,
- 19 Ullman-Cullere, M., Ross, F.P., Coller, B.S., Teitelbaum, S., Hynes, R.O. (1999)
- 20 Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing
- 21 placental defects and reduced survival. J. Clin. Invest. 103,229-238.
- 22 Huang, X., Griffiths, M., Wu, J., Farese, Jr. R.V., Sheppard, D. (2000) Normal

- 1 development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol.
- 2 Cell. Biol. 20,755-759.
- 3 Ji, Y.Z., Bomsel, M., Jouannet, P., Wolf, J.P. (1997) Modifications of the human oocyte
- 4 plasma membrane protein pattern during preovulatory maturation. Mol. Reprod. Dev.

5 47,120-126.

- 6 Ji, Y.Z., Wolf, J.P., Jouannet, P., Bomsel, M. (1998) Human gamete fusion can bypass
- 7 beta1 integrin requirement. Hum. Reprod, 13,682-689.
- 8 Jury, J.A., Frayne, J., Hall, L. (1997) The human fertilin alpha gene is non-functional:
- 9 implications for its proposed role in fertilization. Biochem. J. 321,577-581.
- 10 Kaji, K., Oda, S., Shikano, T., Ohnuki, T., Uematsu, Y., Sakagami, J., Tada, N., Miyazaki,
- 11 S., Kudo, A. (2000) The gamete fusion process is defective in eggs of CD9-deficient mice.
- 12 Nat. Genet. 24,279-282.
- 13 Le Naour, F., Rubinstein, E., Jasnin, C., Prenant, M., Boucheix, C. (2000) Severely
- 14 reduced female fertility in CD9-deficient mice. Science 287,319-321.
- 15 Mayer, U., Saher, G., Fassler, R., Bornemann, A., Echtereyer, F., von der Mark, H.,
- 16 Miosge, N., Poschl, E., von der Mark, K. (1997) Absence of integrin alpha7 causes a
- 17 novel form of muscular dystrophy. Na.t Genet. 17,318-323.
- 18 McLaughlin, E.A., Frayne, J., Bloomberg, G., Hall, L. (2001) Do fertilin beta and
- 19 cyritestin play a major role in mammalian sperm-oolemma interactions? A critical
- 20 re-evaluation of peptide mimics in identifying specific oocyte recognition proteins. Mol.
- 21 Hum. Reprod. 17,313-317.
- 22 Miller, B.J., Georges-Labouesse, E., Primakoff, P., Myles, D.G. (2000) Normal

1	fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J.
2	Cel.l Biol. 149,1289-1296.
3	Miyado, K., Yamada, G., Yamada, S., Hasuwa, H., Nakamura, Y., Ryu, F., Suzuki, K.,
4	Kosai, K., Inoue, K., Ogura, A., Okabe, M., Mekada, E. (2000) Requirement of CD9 on
5	the egg plasma membrane for fertilization. Science 287,321-324.
6	Myles, D.G., Kimmel, L.H., Blobel, C.P., White, J.M., Primakoff, P. (1994) Identification
7	of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc.
8	Natl. Acad. Sci. USA. 91,4195-4198.
9	Primakoff, P., Hyatt, H., Tredick-Kline, J. (1987) Identification and purification of a
10	sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell. Biol.
11	104,141-149.
12	Sengoku, K., Tamate, K., Takaoka, Y., Horikawa, M., Katayama, H., Ishikawa, M. (1995)
13	The use of zona-free aged unfertilized human oocytes as a predictor for successful
14	subzonal insemination. Fertil. Steril. 64,122-127.
15	Takahashi, Y., Bigle, r D., Ito, Y., White, J.M. (2001) Sequence-specific interaction
16	between the disintegrin domain of mouse ADAM 3 and Murine eggs: role of $\beta 1$
17	integrin-associated protein CD9, CD81, and CD98. Mol. Biol. Cell. 12,809-820.
18	Tesarik, J. (1989) The potential diagnostic used of human zona-free eggs prepared from
19	oocytes that failed to fertilize in vitro. Fertil. Steril. 52,821-824.
20	Yuan, R. Primakoff, P., Myles, D.G. (1997) A role for the disintegrin domain of cyritestin,
21	a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma

22 membrane adhesion and fusion. J. Cell. Biol. 137,105-112

1	Zhu, X., Bansal, N.P., Evans, J.P. (2000) Identification of key function amino acids of the
2	mouse fertilin beta (ADAM2) disintegrin loop for cell-cell adhesion during fertilization. J.
3	Biol. Chem. 275,7677-7683.
4	Zhu, X., Evans, J.P. (2002) Analysis of the roles of RGD-binding integrins, alpha4/alpha9
5	integrins, alpha6 integrins and CD9 in the interaction of the fertilin beta (ADAM2)
6	disintegrin domain with the mouse egg membrane Biol. Reprod. 66,1193-1202.
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	

-1

3 Figure 1

4 Different patterns of staining of human oocytes with antibodies against integrin subunit.

5 (A) Oocyte surface was equally stained (uniformly distributed pattern: integrin αV

6 subunit); (B) almost of oocyte surface was labeled (unevenly distributed pattern: integrin

β1 subunit); (C) oocyte surface was partially stained (unevenly distributed pattern:
integrin α5 subunit) (D) negative control.

Integrin	No. oocyte	Pattern of staining (no. of oocytes)		
Subunit	examined	uniformly distributed	unevenly distributed	not stained
α 1	8	0	0	8
α 2	10	5	3	2
α 3	11	8	3	0
α4	8	0	0	8
α 5	10	6	3	1
αб	12	9	3	0
α V	11	7	4	0
αΜ	10	4	3	3

 Table I
 Staining pattern of human oocytes with antibodies against the integrin subunits alpha

Integrin	No. oocyte	Pattern of staining (no. of oocytes)		
Subunit	examined	uniformly distributed	unevenly distributed	not stained
β1	10	7	3	0
β2	9	7	2	0
β3	12	7	3	2
β4	11	8	3	0
β5	10	6	4	0
β6	12	8	2	2

 Table II
 Staining pattern of human oocytes with antibodies against the integrin subunits beta

	No. of eggs	No. of total sperm (bound or fused) per egg (±SEM)	No. of sperm bound (not fused) per egg (±SEM)	No. of sperm fused per egg (±SEM)	Ratio of fused sperm to total (bound or fused) sperm
control	54	9.0±1.5	3.7±0.4	5.3±0.8	0.59 (286/486)
α2	11	5.2±0.8b	2.4±0.3b	2.8±0.5b	0.54 (31/57)
α3	12	4.9±0.7a	1.5±0.2 a	3.4±0.6b	0.68(40/59)
α5	12	6.0±0.9b	2.7±0.4b	3.3±0.5b	0.56(40/72)
α6	13	5.5±0.8b	2.7±0.4b	2.8±0.3b	0.51 (37/72)
αV	14	4.8±0.6a	2.2±0.2b	2.6±0.3b	0.54(36/67)
αΜ	11	5.3±0.7b	2.5±0.3b	2.8±0.4b	0.53 (31/58)

Table	III	Inhibition of	of sperm-oolemr	na binding and	fusion by an	tibodies against	integrin alph	a subunits
			1	0		0	0 1	

a p < 0.01 versus control, b p < 0.05 versus control

	No. of eggs fertilized/ No. of total eggs	No. of total sperm (bound or fused) per egg (±SEM)	No. of sperm Bound (not fused) per egg (±SEM)	No. of sperm fused per egg (±SEM)	Ratio of fused sperm to total (bound or fused) sperm
control	81	9.0±1.5	3.7±0.4	5.3±0.8	0.59 (430/728)
β1	14	5.9±0.8b	2.7±0.2b	3.2±0.5b	0.54 (45/83)
β2	13	4.6±0.6a	2.1±0.2b	2.6±0.4b	0.57(34/60)
β3	12	4.8±0.6a	1.6±0.2a	3.2±0.5b	0.66(38/57)
β4	13	8.1±1.3	2.8±0.3	5.3±0.9	0.65(68/105)
β5	11	8.4±1.4	3.1±0.4	5.3±0.8	0.57(56/98)
β6	11	8.2±1.3	3.0±0.4	5.2±0.8	0.64(58/90)

 Table
 IV
 Inhibitipn of sperm-oolemma binding and fusion by antibodies against integrin beta subunits

a p <0.01 versus control, b p <0.05 versus control

Figure 1